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Abstract

In this paper, we propose a novel unsupervised graph as-
sociation (UGA) to learn the underlying view-invariant rep-
resentations from the video pedestrian tracklets. The core
points of it are mining the cross-view relationships and re-
ducing the damage of noisy associations. To this end, UGA
adopts a two-stage training strategy: (1) intra-camera
learning stage and (2) inter-camera learning stage. The
former is to learn representations of a person with regards
to camera information, which helps to reduce false cross-
view associations in the second stage. Compared with ex-
isting tracklet-based methods, ours can build more accu-
rate cross-view associations and require lower GPU mem-
ory. Extensive experiments and ablation studies on seven
RE-ID datasets demonstrate the superiority of the proposed
UGA over most state-of-the-art unsupervised and domain
adaptation RE-ID methods. Code is available at github1.

1. Introduction
Person Re-identification (RE-ID) aims to match the same

pedestrian across non-overlapping camera views, which has
potential applications like longterm multi-camera tracking
and forensic search. Benefiting from the advance of deep
learning, especially the deep convolution network [14, 10],
the performance of RE-ID has obtained significant improve-
ments [19, 42, 30, 32, 29, 31, 48]. In supervised learning,
the deep CNN learns view-invariant representations from
the pair-wise labelled data. Since deep CNN is a data-driven
method, it requires a large number of pair-wise labelled data
in training. Figure 1 show some pair-wise labelled tracklets
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Figure 1: Examples of the pair-wise labelled tracklets. Pair-
wise labelled tracklets refer the images belonging to the
same person under different cameras.

from different cameras. However, labelling sufficient pair-
wise RE-ID data is expensive and time-consuming. How to
improve the performance and scalability of deep RE-ID al-
gorithm without pair-wise labelled data (i.e., unsupervised
learning) is a great challenge in recent person RE-ID re-
search.

There have been a series of unsupervised image based
methods to address this problem, which can be roughly
divided into three categories: 1) image-to-image trans-
lation, 2) domain adaptation, 3) unsupervised clustering.
The image-to-image translation methods [51, 49, 4, 1, 38]
transfer the source domain images to the target domain by
GAN [9] network. The domain adaptation methods [21, 36]
aim to transfer the source domain trained model to the target
domain in an unsupervised manner. Unsupervised cluster-
ing methods [5, 16] obtain the pseudo labels of target do-
main data through the unsupervised clustering algorithms
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Figure 2: The framework of the proposed unsupervised graph association (UGA), including 1) intra-camera learning stage
and 2) inter-camera learning stage. The model architecture consists of a Resnet-50 backbone, a global average pooling
layer (GAP), an embedding block and multi-branch-classifier. The embedding block includes a batch normalization layer, a
drop-out layer, a FC layer reducing the 2048-dim feature to 1024-dim and a batch normalization layer.

and fine tune the source domain model with pseudo labels
on target domain.

However, the precondition of above mentioned meth-
ods is that there are some similarities between the source
domain and the target domain. For example, as shown
in [5, 4, 22], the above mentioned three methods can
easily achieve high performances between Market1501
[46] and DukeMTMC-ReID [27], since Market1501 and
DukeMTMC-ReID are similar to each other. However, the
performance becomes worse when using MSMT17 [38] as
the target. This is because the variations of illumination
and resolution are more complicated in MSMT17 than that
in Market-1501 and DukeMTMC-ReID. The unsupervised
image based methods are sensitive to these variations and
have poor scalability to unknown scenes.

Recently, the tracklet based methods (i.e., TAUDL [17],
UTAL [18], RACE [40], BUC [23]) have been proposed to
overcome this weakness. Pedestrian tracklets are easily ob-
tained by existing tracking algorithms [15, 28, 6, 7, 44].
The frames of the same tracklet generally belong to the
same identity. Owing to this, the complexity of the unsuper-
vised learning is reduced as presented in TAUDL, UTAL.
However, UTAL and TAUDL match the underlying posi-
tive pairs in the mini batch. Due to this, both of them need
a large batch size (384) to sample the underlying positive
pairs which may occupy at least five 1080-Ti GPUs in train-
ing. RACE and BUC, which progressively merge the un-
derlying positive pairs in training, are easily damaged by

merging noisy pairs.
To address these problems, we propose an unsupervised

graph association (UGA) framework for tracklet based un-
supervised RE-ID. The pip line is shown in Figure 2, it con-
tains an intra-camera learning stage and an inter-camera
learning stage.

Intra-camera learning stage. We apply the multiple-
branch-classifier (MBC) structure to learn the intra-camera
representation, where each classifier branch corresponds to
one camera’s classification task. Besides, we apply an em-
bedding block at the top of the backbone, which makes
the negative pairs easier to be distinguished and avoids the
training overfitting.

Inter-camera learning stage. We build a cross-view
graph (CVG) to associate pedestrian tracklets and develop
a cross-camera loss to learn the view-invariant representa-
tions from CVG. We replace the weights of MBC with the
corresponding nodes of CVG to fast updating CVG in the
training process. In order to reduce the damage of the noisy
associations, we introduce two constraints (threshold, sym-
metry) into CVG and use the CVG’s edge weight as the
weighting of the cross-camera loss. To sum up, the contri-
butions of this paper can be summarized as follows:

• We propose a simple yet effective unsupervised person
RE-ID framework, named unsupervised graph associ-
ation (UGA). Without any source domain pre-training,
UGA achieves high performance, with low GPU mem-



ory occupation.

• We incorporate a novel cross-view graph (CVG) and
a cross-camera loss into UGA framework. By using
both of them, model can learn the view-invariant rep-
resentations from the underlying positive samples.

• We conduct extensive experiments and ablation studies
on seven RE-ID datasets to demonstrate the effective-
ness of the proposed UGA.

2. Related work
Deep supervised person RE-ID. The aim of person

re-identification (RE-ID) is retrieving the same person un-
der multiple views. Benefitting from the advance of the
deep learning algorithm, person RE-ID has achieved a re-
markable progress [42, 32, 34, 29, 2, 48, 35, 33]. Yi et
al. [42] adopt image pairs and introduce part priors into
a siamese network for learning the view-invariant represen-
tations. Sun et al. [32] and chang et al. [2] develop the
part feature based methods to enhance the discriminative of
Re-ID features. Wang et al. [34] fuse the temporal-spatial
information with appearance information to improve the re-
trieval accuracy.

Unsupervised person RE-ID. Deep person RE-ID al-
gorithm has poor scalability in real-word applications, due
to the lack of sufficient pair-wise labelled data for training.
To solve this problem, lots of unsupervised person RE-ID
methods are proposed [51, 49, 21, 36, 5, 52, 47]. Zhong
et al. [51, 49], Deng et al. [4] and Bake et al. [1] adopt
the GAN network to transfer the source domain training im-
ages to target domains, or transfer the target domain testing
images to the source domain for improving the testing accu-
racy. Li et al. [21] and Wang et al. [37] apply the domain
adaptation methods transferring source domain knowledge
to target domain. Fan et al. [5] and Wu et al. [16] fine tune
the source model in target domain with target data pseudo
labels, which are obtained by the unsupervised clustering
algorithm. However, these methods rely on the similarity
between the source domain and the target domain. In or-
der to reduce the dependence on the source domain, the
tracklet-based methods are proposed. Li et al. [17, 18]
match the underlying positive pairs in the mini batch, using
a cross camera histogram loss to learn the view-invariant
features. Ye et al. [40] propose a robust embedding to re-
duce the damage of the noisy frames for estimator pseudo
labels more accuracy.

Graph based methods. Considering the relationships
between the training samples, graph based methods [25, 8,
3, 29] are used to provide more supervision signals for both
of semi-supervised learning and supervised training. Luo
et al. [25] propose a smoothing neighbors on teacher loss
(SNTG) for semi-supervised learning. SNTG builds the re-
lation graph of training samples and learns more smoothing

representations from the relation graph. SNTG is a semi-
supervised method, which deals the closed set classification
and needs a few of labelled samples for training. However,
it is not suitable for the unsupervised person RE-ID task,
since unsupervised person RE-ID is an open-set retrieval
problem. Shen et al. [29] propose a similarity-guided graph
neural network (SGGNN) to enhance the relations between
the probe images and the gallery pedestrian images. But
SGGNN is a supervised training approach which needs lots
of labelled samples to build the graph for training.

3. Method

Definition. Suppose we have a dataset, captured from T
cameras. We adopt the sparse space-time tracklets sampling
(SSTT) [17] to sample the training tracklets {sit, yit} from

each camera. Denoting sit = {I
sit
1 , I

sit
2 , ..., I

sit
n }, where Is

i
t
n

is the n-th image of the i-th tracklet (i ∈ [1, . . . ,Mt]) in
t-th camera (t ∈ [1, . . . , T ]). We randomly assign a unique
pseudo label yit(y

i
t ∈ {y1t , . . . , y

Mt
t }) for the sit. φ(·) is the

backbone function. ft is the t-th branch classifier of MBC.
W i
t is the weight of ft, corresponding to the class of sit.

3.1. Intra-camera learning
Through the SSTT sampling, we can obtain the training

data {sit, yit} for each camera and a person has at most one
tracklet in each camera. To avoid the conflict of pseudo
labels, we adopt the multi-task training to learn the intra-
camera representation. The pip line of intra-camera learn-
ing is shown in Figure 2. A multi-branch-classifier (MBC)
structure is adopted to model the persons classification in
different cameras as a multi-task problem. All of the clas-
sifiers share the backbone features. For the t − th branch,
the softmax cross-entropy loss function is formulated as fol-
lows:

ltce(I
sit
n ) = −

Mt∑
j=1

log(
e(W

j
t )T φ(I

sit
n )∑Mt

k=1 e
(Wk

t )T φ(I
sit
n )

) (1)

In the Eq. (1), W j
t is the weight of sit and φ(I

sit
n ) is the

representation vector of Is
i
t
n extracted by the backbone φ(·).

The total loss of all branches lintra can be defined as Eq. (2),
where Nbs denotes the batch size.

lintra =
1

Nbs

∑
Nbs

ltce(I
sit
n ) (2)

To avoid overfitting and restrain negative pairs at the
intra-camera learning stage, we add an embedding block at
the top of the backbone (shown in Figure 2), which contains
two batch normalization layers and one drop-out layer. As
shown in Figure 3, the batch normalization layer is effec-
tive to reduce the average similarity score of the negative



Algorithm 1: Unsupervised graph association (UGA)

Input: Pair-wise unlabelled tracklets sit of T cameras.
The Backbone φ and multi-branch-classifier ft.
W i
t is the weight vector of ft.

Threshold λ and max iteration epmax.
Initializing iteration step ep← 0.
(t = 1, . . . , T )

while ep < epmax do
1: ep← ep+ 1;
2: Computing Lintra according Eq. (2);
3: Updating φ and ft;

end
1: Computing tracklets center cit ;
2: Replacing classifier weight vector W i

t with cit ;
3: Initializing CVG G(cit, e(c

i
t, c

a
m)), according Eq. (5);

4: Reset ep← 0 ;
while ep < epmax do

1: ep← ep+ 1;
2: Computing Linter according Eq. (9);
3: Updating φ, cit;
4: Updating G(cit, e(c

i
t, c

a
m));

end
Output: Backbone φ.

pairs. The ablation study in later section proves that the per-
formance of the intra-camera learning stage obtains a great
improvement.

3.2. Inter-camera learning

Extracting tracklets’ representation. In the inter-
camera learning stage, we fuse all of the frames’ future as
the tracklet’s representation cit. The definition of cit is shown
in Eq. (3), where Nsit is the number of the tracklet frames.

cit =

∑N
sit

n=1 φ(I
sit
n )

Nsit
, I

sit
n ∈ sit (3)

Building cross-view graph (CVG). We define a local
KNN set {cit}mK of cit, which finds of the nearestK tracklets
of cit in camera m. Through merging these local KNN sets,
we can get CVG. However, there are lots of noisy links in
CVG. In order to reduce them, we apply a threshold con-
straint and a symmetric constraint on graph edges. For
arbitrary nodes cit and cjm on CVG, the former requires the
cosine similarity between the nodes cit and cjm is larger than
the threshold λ, while the latter requires cit and cjm must ex-
ist in each other’s local KNN set. The symmetric constraint
can be formulated as:

(cit, c
j
m)K = {cjm ∈ {cit}mK & cit ∈ {cjm}tK} (4)

In above equation, if the symmetric constraint can is satis-
fied, (cit, c

j
m)K is true; otherwise, (cit, c

j
m)K is false. If the

edge is not satisfied these two constrains, the edge will be
removed from CVG. The weight of the edge e(cit, c

j
m) can

be summarized as follows :

e(cit, c
j
m) =


cos(cit, c

j
m) if cos(cit, c

j
m) > λ & (cit, c

j
m)K

1 if cit = cjm
0 other

(5)
where cit = cjm denotes the node cit connects itself, i.e.,
e(cit, c

i
t) is a self-connection. Considering through the

SSTT sampling, each person has at most one tracklet in
each camera. K is set to 1 in this paper. Through the local
KNN set and these two constrains, we can obtain a precise
cross-view graph (CVG).

Cross-camera loss. We develop a graph weighted loss
as the cross-camera loss to pull the underlying positive pairs
close. Firstly, we define a graph neighbor set N(sit) of the
tracklet sit:

N(sit) = {(sam, yam)|if e(cit, cam) 6= 0} (6)

In fact, N(sit) is a set which contains sit’s all local nearest
neighbors of all cameras. Though SSTT sampling, we give
a pseudo label yit for sit under t-th camera and give a pseudo
label yam for sam under m-th camera. We think these track-
lets sam(sam ∈ N(sit)) belonging to the same graph neigh-
bor set are the underlying positive pairs. Based on this, the
pseudo label of sit may be yam under m-th camera, while the
pseudo label of sam may be yit under t-th camera. We hope
to learn view-invariant representation by pulling these un-
derlying positive pairs close. To this end, we propose the
following cross-camera loss:

lce(I
sit
n , s

a
m) = −

Mm∑
j=1

log(
e(c

j
m)T φ(I

sit
n )∑Mm

k=1 e
(ckm)T φ(I

sit
n )

)

linter(I
sit
n ) =

∑
N(sit)−s

i
t

lce(I
sit
n , s

a
m), sam ∈ N(sit)

(7)

In above equation, we replace the weight parameters W i
t

of ft with the corresponding CVG node cit. By doing this,
CVG can be fast updated in training process.

Graph weighted cross-camera loss. In Eq. (7), if
sam and sit have different IDs, the cross-camera loss will
pull negative pairs close. We adopt two strategies to al-
leviate this problem: 1) using the graph edge’s weight as
the weighting of the cross-camera loss to reduce the dam-
age of the negative pairs; 2) adding the intra-camera loss
as a self-camera constraint item with a constraint weight
α = e(cit, c

i
t). The cross-camera loss of the image Is

i
t
n can

be redefined as follows:

linter(I
sit
n ) =

∑
N(sit)−s

i
t

e(cit, c
a
m)lce(I

sit
n , s

a
m) + αlce(I

sit
n , s

i
t)

=
∑
N(sit)

e(cit, c
a
m)lce(I

sit
n , s

a
m), where α = e(cit, c

i
t)

(8)



The multi-branch-classifier loss of the whole mini batch is
formulated as follows:

linter =
1

Nbs

∑
Nbs

linter(I
sit
n ), t ∈ [1, . . . , T ] (9)

In Eq. (8), if the model is misled by negative pairs,
lce(I

sit
n , sit) will punish it with a large gradient.

CVG’s updating. In the above equation, the derivative
of cam can be re-emphasized as:

∂linter
∂cam

= −
∑
Nbs

err(I
sit
n )e(cit, c

a
m)φ(I

sit
n ) (10)

with:

err(I
sit
n ) = 1(yam == j)− e(c

j
m)Tφ(I

sit
n )∑Mm

k=1 e
(ckm)Tφ(I

sit
n )

(11)

The updating of CVG’s node cam can be formulated as:

cam ← cam−η
∑
Nbs

err(I
sit
n )e(cam, c

i
t)φ(I

sit
n ), t ∈ [1, . . . , T ] (12)

In above equation, η denotes the learning rate and Mm is
the total number of tracklets in camera m. According to
Eq. (12), the updating of cit makes full use of underlying
positive pairs from all camera views. This measure pulls
underlying positive pairs close and encourages CVG finding
more cross-view underlying positive pairs.

4. Experiment
4.1. Experimental Setup

Datasets and evaluation protocol. All experiments
are evaluated on four image RE-ID datasets (Market-1501
[46], DukeMTMC-ReID [27, 47], CUHK03-detected [20],
MTMS17 [38]) and three video RE-ID datasets (Mars [45],
Prid2011 [11], iLIDS-Video [37]). The ablation studies
are mainly conducted on Market-1501 [46] and Mars [45]
which are most the widely used image and video person
RE-ID datasets. The training/testing ID splits are shown
in Table 1. Common cumulative matching characteristic
(CMC) and mean average precision (mAP) are used as the
performance evaluation metric. Particularly, on Market-
1501, we follow the single-query evaluation protocol. On
the CUHK03-detected, we follow the standard single-shot
protocol for the labelled images and detected images sepa-
rately, which needs to repeat 20 times of random 1,367/100
training/testing identity splitting and report the averaged re-
sults.

Pseudo label assignment. We follow the experiments
settings and tracklet sampling methods of TAUDL [17] and
UTAL [18]. For video datasets, iLIDS-VID and PRID2011

Table 1: Dataset statistics and training/testing splitting

Dataset ID Cam Track Tain Test Images
iLDS-VID 300 2 600 150 150 43,800
PRID2011 178 2 354 89 89 38,466

MARS 1,261 6 20,478 625 636 1,191,003
Market 1,501 6 0 751 750 32,668
Duke 1,812 8 0 702 1,110 36,411

MSMT17 4,101 15 0 1,041 3,060 126,441
CUHK03 1,467 2 0 1,367 100 14,096

”Market”, ”Duke” and ”CUHK03” denote Market-1501, DukeMTMC-
ReID and CUHK03-detected datasets respectively.

provide only one tracklet of a person in one camera. But
MARS has multiple tracklets per ID per camera. We ran-
domly sampling one tracklet for a person in one camera on
MARS. For the image RE-ID datasets, we assume all im-
ages of a person in one camera are belong to a single track-
let. Then, we randomly assign a unique pseudo label to each
tracklet for each camera.

4.2. Implement details

The structure of the backbone is shown in Figure 2.The
training images are resized to 256×128. In order to balance
the model learning speed over different cameras, we adopt
an equably sampling strategy, i.e., randomly sampling the
same number images from each camera in a mini batch. The
batch size of our experiments is set to 60. Adam optimizer
is applied in our training process, with initializing the learn-
ing rate of 3.5e−4 and decaying 0.1 at the 40-th and 60-th
epoch. The hyper-parameter λ is set to 0.65. The total train-
ing epoch is 80 for both the intra-camera and inter-camera
learning stage.

4.3. Ablation Study

BN analysis. As shown in Figure 3, after adding a BN
layer for both the supervised algorithm and unsupervised
algorithm, the average similarity of negative samples be-
comes 17 times smaller than that of positive samples in

Table 2: The ablation studies of the BN.

strategies Market-1501 Mars
metric(%) mAP Rank 1 mAP Rank 1

R 27.9 47.3 26.0 41.1
R+BN 55.6 78.9 33.2 53.4

R+embed 54.8 77.5 35.1 55.1

R* 73.5 88.2 47.6 62.2
R+BN* 77.1 91.5 51.7 67.6

R+embed* 77.9 91.2 55.7 69.6
1 ∗ denotes the supervised algorithm.
2 ”R” denotes only use the Resnet-50 backbone;
3 ”R+BN” denotes adding a BN after the backbone;
4 ”embed” denotes adding an embedding block af-

ter the backbone.



Table 3: The performance of different λ

Market DukeMTMC CUHK03 MSMT17 Mars Prid2011 iLIDS-VID
metric(%) mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 R1 R5 R1 R5

0.55 67.5 85.5 54.2 74.8 70.5 59.6 20.2 46.0 38.7 58.1 71.9 92.1 54.0 74.0
0.6 68.9 86.3 55.2 74.3 69.4 57.2 21.7 50.2 40.5 59.9 79.8 93.3 51.3 72.7
0.65 70.3 87.2 53.3 75.0 68.2 56.5 21.7 49.5 39.3 58.1 80.9 94.4 57.3 72.0
0.7 71.0 87.9 55.7 75.7 63.4 51.0 20.9 47.3 37.8 57.7 77.5 92.1 47.3 70.0
0.75 69.3 86.3 55.1 75.0 61.6 48.4 21.3 49.2 35.5 54.5 70.8 91.0 48.0 69.3

Table 4: The performance of the intra-learning stage and inter-learning stage

Market DukeMTMC CUHK03 MSMT17 MARS Prid2011 iLIDS-VID
metric(%) mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 R1 R5 R1 R5

intra 54.8 77.5 52.5 72.6 56.3 42.2 19.7 45.7 35.1 55.1 65.2 86.5 42.7 74.0
inter(λ = 0.65) 70.3 87.2 53.3 75.0 68.2 56.5 21.7 49.5 39.3 58.1 80.9 94.4 57.3 72.0
improvement +15.5 +9.7 +0.8 +2.4 +11.9 +14.3 +2.0 +3.8 +4.2 +3.0 +15.7 +7.9 +14.6 -2.0

the unsupervised algorithm, while it becomes the 355 times
smaller in the supervised algorithm. It indicates the BN
layer helps to make the positive and negative samples easier
to be discriminated. Particularly, the unsupervised tracklet
based algorithm obtains a huge promotion. As in previous
work ( [12, 29]), BN may help the deep network converge
faster and we find that the faster convergence helps better
distinguish negative pairs. We compare two BN structures
in Table 2: 1) adding a batch normalization layer at the top
of the Resnet-50 backbone (R+BN); 2) applying an embed-
ding structure (BN-Dropout-FC-BN) after the Resnet-50
backbone. The performances of the two structure are shown
in Table 2. R+BN achieves a better result on Market-1501,
while the embedding block performs better on MARS. To
avoid overfitting, we adopt the embedding block in this pa-
per, since the embedding block includes a dropout layer.

Table 5: Effect of the self-camera constraint item.

Market-1501 MARS
Metric(%) mAP R 1 mAP R 1

base1 54.8 77.5 53.1 55.1
w/o self-cam2 65.8 83.7 36.7 53.4
w self-cam2 71.0 87.9 40.5 59.9

1 Baseline model of intra-camera learning stage.
2 Self-camera Constraint item.

Table 6: Robust analysis of noisy tracklets on MARS

Rate ID duplication Mislabeling
Metric(%) mAP R1 R5 mAP R1 R5

0% 35.1 55.1 74.6 35.1 55.1 74.6
20% 31.9 54.1 68.9 33.4 53.3 67.2
50% 30.1 51.4 66.3 26.8 45.7 61.4

100% 27.2 48.8 64.2 - - -

Figure 3: (a) and (b) show the average similarity score of
positive pairs and negative pairs on Market-1501, respec-
tively. The average similarity score of negative pairs de-
clines obviously after using BN for both of the supervised
and unsupervised training.

Threshold λ analysis. The threshold λ is important for
the initialization and updating of CVG. The precision scores
and recall scores with different λ are shown in Figure 4 .
With λ increasing from 0.1 to 0.9, the precision is closing
to 1 while the recall score is declining to 0. As shown in
Figure 4, the precision score is greatly improved after us-
ing the symmetric constraint. It proves that our symmetric
constraint strategy is effective. There is a good trade-off
between recall and precision, when λ is set between 0.55
and 0.75. Therefore, in the Table 3, we evaluate the per-
formance of λ from {0.55, 0.6, 0.65, 0.7, 0.75}. From the
average Rank-1, λ = 0.65 achieves the best performance,
and λ = 0.75 performs worst.

Self-camera constraint item analysis. We introduce
a self-camera constraint item into the cross-camera loss
(Eq. (8)), to alleviate the misleading by noisy associations.
The ablation study of the self-camera constraint item is
shown in Table 5. The self-camera constraint item improves
5.2% mAP and 4.2% rank-1 in Market-1501, while im-
proving 3.8% mAP and 5.4% rank-1 in MARS. Particularly



Figure 4: Precision scores and recall scores of different λ.
In this figure,”pre” denotes the precision. ”rec” denotes the
recall. ”sys pre” and ”sys rec” respectively denote the pre-
cision and recall of using the symmetry condition. The hor-
izontal axis is the value of the λ.

in the MARS, without the self-camera constraint item, the
inter-camera learning even brings down the performance of
the intra-camera learning stage.

Effectiveness of the cross-camera loss. The inter-
camera training stage encourages the model to learn the
view-invariant representations. The performance of the
intra-camera learning and inter-camera learning are shown
in Table 4. We can observe that the inter-camera stage av-
eragely improves 7.55% rank-1 for image RE-ID datasets,
and averagely improves 11.1% rank-1 for video RE-ID
datasets. This demonstrates the effective of CVG and the
cross-camera loss.

Robust analysis of intra-camera stage. The assump-
tion of our experiments is one person has only one tracklet
in each camera through SSTT sampling. However, it may
not always hold in real-word applications. The ID duplica-
tion and mislabelling often occur in practice. The ID du-
plication is that the tracklets of the same person are given
different pseudo labels. While the mislabelling is assigned
the tracklets of different persons with the same pseudo la-
bels. The base of UGA is the intra-camera learning stage.
To evaluate the robust of this stage, we simulate noisy track-
lets in these two situations. For the ID duplication sit-
uation, we randomly select a part (20%, 50%, 100%) of
persons per camera to create the ID duplication, while the
remaining IDs still sample one tracklet. In Table 6, we
can see that 20% of the persons have ID duplication, the
model of the intra-camera stage declines by 1% on rank-1;
when 50% of the persons have ID duplication, the model
of the intra-camera stage declines by 3.7% on rank-1; when
all the persons have ID duplication, the model of the intra-
camera stage still achieves 48.8% rank-1 and 27.2% mAP.
The model of the intra-camera stage is not very sensitive
to the ID duplication noise. For the mislabelling situa-
tion, we randomly merge a portion (20%, 50%) of track-
lets to simulate the mislabelling situation. When merging
20% of all the tracklets, rank-1 is decreased by 1.8%; when
merging with 50% of all the tracklets, rank-1 is decreased

by 9.4%. Under the influence of two kinds of noise, the
intra-camera learning stage model still achieves a competi-
tive performance.

4.4. Comparison to the state-of-the-art methods

We compare our UGA with some state-of-the-art un-
supervised person RE-ID methods, specifically comparing
with four similar unsupervised graph based methods. The
performances of these methods are shown in Table 7 and
Table 8.

Image person RE-ID datasets. Table 7 shows the per-
formance of several state-of-the-art methods on four image
person RE-ID datasets, containing four GAN based meth-
ods (HHL, SPGAN, SPGAN+LMP), two domain adapta-
tion methods (TJ-AIDL, ECN), four unsupervised cluster-
ing methods (BUC, CAMEL, PUL and CDS) and two track-
let based method (UTAL, TAUDL). The proposed UGA
outperforms all these approaches. Specifically, UGA aver-
agely outperforms the second by 9.6% on Rank-1 accuracy
and 16.8% on mAP, respectively. Both of the adaptation
methods and cluster methods rely on source domain adap-
tation, specifically cluster method is inefficient on the large
dataset (i.e., MSMT17) since it will spend much time on of-
fline data clustering. Comparing with them, UGA has better
generalization ability, since UGA does not need source do-
main pre-training and the association progress (CVG) can
be updated online.

Video person RE-ID datasets. We compare the pro-
posed UGA on three video person RE-ID datasets with
several state-of-the-art approaches in Table 8. The pro-
posed UGA outperforms all the state-of-the-art methods on
iLIDS-VID, 15.6% higher than the second (SMP) on Rank-
1. On Prid2011, UGA is also competitive and even reaches
100% on Rank-20. On MARS, our approach does not per-
form as good as EUG and BUC. However, as shown in
BUC [23] and EUG [39], BUC is sensitive to the hyper-
parameter and merging times, while EUG is sensitive to
the enlarging factors. When the enlarging factors chang-
ing, the rank-1 of EUG declines from 62.67% to 42.77%.
The Rank-1 of UGA varies from 59.9% to 54.5% with the λ
changing. Comparatively, UGA is more robust to the hyper-
parameter.

Comparison with the unsupervised graph based
methods. We compare our UGA with the existed graph
based work (i.e., TUADL [17], UTAL [18], RACE [40]
and ECN [50]) in Table 7 and Table 8. UGA averagely out-
performs TAUDL by (17.4% on Rank-1, 21.3% on mAP) in
image person RE-ID datasets and (25.4% on Rank-1, 16.6%
on Rank-5) in video person RE-ID datasets. UGA outper-
forms UTAL by (12.3% on Rank-1, 16.8% on mAP) in im-
age person RE-ID datasets and (18.9% on Rank-1, 10.4%
on Rank-5) in video person RE-ID datasets. In addition,
both of TAUDL and UTAL matches the positive pairs in the



Table 7: Comparing UGA with the state-of-the-art methods on the image person RE-ID dataset

Dataset Reference Method Market1501 DukeMTMC-ReID CUHK03 MSMT17
metric mAP Rank 1 mAP Rank 1 mAP Rank 1 mAP Rank 1

HHL [49] ECCV’18 GAN 31.4 62.2 27.2 46.9 - - - -
SPGAN [4] CVPR’18 GAN 22.8 51.5 22.3 41.1

SPGAN+LMP [4] CVPR’18 GAN 26.7 57.7 26.2 46.4 - - - -
TJ-AIDL [36] CVPR’17 adaptation 26.5 58.2 23.0 44.3 - - - -

BUC [23] AAA’19 cluster 38.3 66.2 27.5 47.4 - - - -
CAMEL [43] ICCV’17 cluster 26.3 54.5 - - - 39.4 - -

PUL [5] ToMM’18 cluster 20.1 44.7 16.4 30.4 - - - -
CDS [16] ICME’19 cluster 39.9 71.6 42.7 67.2 - - - -

TAUDL [17] ECCV’18 tracklet 41.2 63.7 43.5 61.7 31.2 44.7 12.5 28.4
UTAL [18] TPAMI’19 tracklet 46.2 69.2 44.6 62.3 42.3 56.3 13.1 31.4
ECN [50] CVPR’19 adaptation 43.0 75.1 40.4 63.3 - - 10.2 30.2

UGA(ours) This work tracklet 70.3 87.2 53.3 75.0 68.2 56.5 21.7 49.5
1-st and 2-nd best results are in red/blue respectively.

Table 8: Comparing UGA with the state-of-the-art methods on the video person RE-ID dataset.

Datasets Reference PRID2011 iLIDS-VID MARS
Metric(%) R1 R5 R20 R1 R5 R20 R1 R5 R20 mAP
SMP [24] ICCV’17 80.9 95.6 99.4 41.7 66.3 80.7 23.9 35.8 44.9 10.5

DGM+MLAPG [41] ICCV’17 73.5 92.6 99.0 37.1 61.3 82.0 24.6 42.6 57.2 11.8
DGM+IDE [41] ICCV’17 56.4 81.3 96.4 36.2 62.8 82.7 36.8 54.0 68.5 21.3

DASy [1] ECCV’18 43.0 - - 56.5 - - - - - -
GRDL [13] ECCV’16 41.6 76.4 89.9 25.7 49.9 77.6 19.3 33.2 46.5 9.56
DTW [26] PR’17 41.7 67.1 90.1 31.5 62.1 82.4 - - - -
BUC [23] AAAI’19 - - - - - - 61.1 75.1 80.0 38.0

EUG(p=0.05) [39] CVPR’18 - - - - - - 62.7 74.9 82.6 42.5
RACE [40] ECCV’18 50.6 79.4 91.8 19.3 39.3 68.7 43.2 57.1 67.6 24.5

TAUDL [17] ECCV’18 49.4 78.7 98.9 26.7 51.3 82.0 43.8 59.9 72.8 29.1
UTAL [18] TPAMI’19 54.7 83.1 96.2 35.1 59.0 83.8 49.9 66.4 77.8 35.2
UGA(ours) This work 80.9 94.4 100 57.3 72.0 87.3 58.1 73.4 81.4 39.3

1-st and 2-nd best results are in red/blue respectively.

mini batch which needs a large batch size (384) to sample
the underlying positive pairs and may occupy at least five
1080Ti GPUs in training. But UGA can be implemented
on one 1080-Ti, since CVG can be stored in CPU memory.
Different from RACE [40] merging the underlying positive
tracklets directly, UGA uses the cross-camera loss and CVG
to associate tracklets. It is more robust to noisy associations.
Due to this, UGA easily achieves the higher performance
than RACE. Comparing with ECN, UGA averagely outper-
forms ECN by (14.4% on Rank-1, 16.1% on mAP) in im-
age person RE-ID datasets. Because ECN is simply apply
a KNN graph to associate the underlying positive samples,
while UGA uses the more precise graph (CVG) to associate
the underlying positive pairs.

5. Conclusion

In this paper, we have proposed a novel yet effective Un-
supervised Graph Association (UGA) approach to address
the unsupervised person RE-ID problem. The core ideas
of UGA are finding more underlying correct associations
and avoiding the damage of noisy associations. To that end,
we mainly adopt an embedding block, a cross-view graph
(CVG) mining strategy and a graph weighted cross-camera
loss. Experiments on four image RE-ID dataset and three
video RE-ID dataset demonstrate the superiority of UGA.
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